morphological$50422$ - ترجمة إلى اليونانية
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:     

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

morphological$50422$ - ترجمة إلى اليونانية

THEORY AND TECHNIQUE FOR THE ANALYSIS AND PROCESSING OF GEOMETRICAL STRUCTURES
Morphological image processing; Morphological Image Processing; Mathematical Morphology; Morphological operations
  • The closing of the dark-blue shape (union of two squares) by a disk, resulting in the union of the dark-blue shape and the light-blue areas.
  • The dilation of the dark-blue square by a disk, resulting in the light-blue square with rounded corners.
  • A shape (in blue) and its morphological dilation (in green) and erosion (in yellow) by a diamond-shaped structuring element.
  • The erosion of the dark-blue square by a disk, resulting in the light-blue square.
  • The opening of the dark-blue square by a disk, resulting in the light-blue square with round corners.
  • Watershed of the gradient of the cardiac image

morphological      
adj. μορφολογικός

تعريف

Morphologist
·noun One who is versed in the science of morphology.

ويكيبيديا

Mathematical morphology

Mathematical morphology (MM) is a theory and technique for the analysis and processing of geometrical structures, based on set theory, lattice theory, topology, and random functions. MM is most commonly applied to digital images, but it can be employed as well on graphs, surface meshes, solids, and many other spatial structures.

Topological and geometrical continuous-space concepts such as size, shape, convexity, connectivity, and geodesic distance, were introduced by MM on both continuous and discrete spaces. MM is also the foundation of morphological image processing, which consists of a set of operators that transform images according to the above characterizations.

The basic morphological operators are erosion, dilation, opening and closing.

MM was originally developed for binary images, and was later extended to grayscale functions and images. The subsequent generalization to complete lattices is widely accepted today as MM's theoretical foundation.